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A PARALLEL TRIANGULAR SOLVER FOR A
DISTRIBUTED- MEMORY MULTIPROCESSOR*

GUANGYE LIT# AND THOMAS F. COLEMANT§

Abstract. We consider solving triangular systems of linear equations on a distributed-memory multipro-
cessor which allows for a ring embedding. Specifically, we propose a parallel algorithm, applicable when
the triangular matrix is distributed by column in a wrap fashion. Numerical experiments indicate that the
new algorithm is very efficient in some circumstances (in particular, when the size of the problem is sufficiently
large relative to the number of processors).

A theoretical analysis confirms that the total running time varies linearly, with respect to the matrix
order, up to a threshold value of the matrix order, after which the dependence is quadratic. Moreover, we
show that total message traffic is essentially the minimum possible.

Finally, we describe an analogous row-oriented algorithm.

Key words. hypercube multiprocessor, parallel triangular solver, parallel Gaussian elimination, parallel
matrix factorization
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Introduction. Recent work on hypercube algorithms for numerical linear algebra
has resulted in efficient parallel methods for the factorization of dense matrices (e.g.,
Geist and Heath [1987], Moler [1986]). However, the discovery of methods for the
efficient parallel solution of the resulting triangular systems has lagged behind some-
what. This is especially true in the case where matrices are distributed by column
(instead of by row). For example, Geist and Heath [1987] recently demonstrated that
the best parallel triangular solver (at that time) was essentially no better than a
distributed sequential solver. While there has been some very recent progress on this
problem (Romine and Ortega [1986]), we propose to further close this gap with a new
and column-oriented parallel triangular solver. This algorithm is applicable on any
distributed-memory message-passing multiprocessor which allows for a ring embed-
ding. In particular, the nodes of a hypercube can be labeled to induce a ring embedding.

Our main purpose in this paper is to propose and analyze a new algorithm for
the parallel solution of a triangular system of linear equations, where the columns of
the matrix are distributed over the nodes (processors) of a multiprocessor in a wrap
fashion. We provide experimental results and theoretical evidence to suggest that this
new algorithm is an efficient parallel method in some circumstances. In particular, this
algorithm is particularly applicable when n is large relative to p, where n is the problem
size and p is the number of processors. Our numerical results are restricted to experi-
ments on p =16 processors; as n increases, the proposed algorithm appears very
competitive. However, recent work by Heath and Romine [1987] and Li and Coleman
[1987] indicates that this algorithm loses its edge as n/p decreases. Nevertheless, Li
and Coleman [1987] generalize this algorithm and the modified algorithm appears
competitive for all n and p; the modified algorithm reduces to the algorithm described
in this report when n/p is sufficiently large.
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It is worth pointing out that there is a definite need for column-based parallel
triangular solvers. Specifically, matrices are often naturally generated by column. For
example, consider a finite-difference approach to Newton’s equations:

F'(x)s =—-F(x),

where we assume that a subroutine for the evaluation of F(x) is available. Then it is
possible to approximate F'(x) with the matrix A(x), where

A(x)e, = F(x+8ebi)—F(x)

and e; is the ith column of the identity matrix. Hence, A(x) is generated by column.
Of course a matrix transpose is always possible (McBryan and Van de Velde [1985])
but this is an expense that can be avoided.

We have implemented our triangular solve algorithm on an Intel iPSC hypercube
multiprocessor with 16 nodes. However, it should be noted that the full hypercube
architecture is not needed by this algorithm: only ring connectivity is used. Therefore,
the algorithm can be used on any local memory message-passing multiprocessor in
which a ring can be embedded provided send and receive primitives are available. We
assume that when control of a node program passes to a send statement, the send is
executed immediately, in time zero, and then control passes on to the next executable
statement in this node program. Of course this does not imply the message is received
immediately—we discuss this transfer time below. We also assume that when control
passes to a receive statement in a node program, execution of this node program is
suspended until the message is physically received, which happens when the appropriate
transfer time elapses.

Message-passing speed plays an important role in the execution time of algorithms
for the solution of triangular systems of linear equations. This contrasts with the
factorization stage (Moler [1986]) in which floating point computations clearly domi-
nate. In order to quantify message-passing speed in our analysis, we use a quantity ¢:

t is the maximum number of flops that can be executed on a single processor
during the time in which a single “small” message is sent by one node and then
received by a waiting adjacent node.

In this context we define “small” to be a message of size less than or equal to p double
precision words (64 bits each), where p is the number of processors. On the Intel iPSC
(release 2.0) with p=16, we have estimated ¢ to be approximately 100 flops, where a
flop is the operation

yeax+y.

We estimated 1 in the following way. First, a message of size p = 16 was forwarded
around a “ring” of 16 processors for a total of 1000 round-trips. That is, processor i
sent the message to node i+1; node i+1 received the message and then sent it to
node i+2, - - - . The total time for these 1000 circuits was recorded as T,. Second, the
time to execute the loop

for i=1:1000 y<ax+y

was recorded as T,. Then t was estimated:

~_ 5

16X T,
Notice that the “ring” used above is defined by the natural ordering of the nodes.
Since the natural ordering does not define a true ring, ¢ is overestimated by this
computation: we feel that this difference is relatively insignificant and we ignore it.
Indeed, we have performed some limited number of experiments using a genuine ring
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embedding; the variance we observed compared to our reported results was always in
the range 10-20 percent. With respect to the purpose of this paper, we do not feel this
difference is significant.
Our paper is organized as follows. Section 1 describes the column algorithm and
provides numerical results and comparisons. Section 2 provides two analyses of the
. column algorithm. The first yields an expression for the running time as a function of
n, t, and p. This expression is most illuminating and we discuss this result at length.
The second analysis establishes that the proposed algorithm induces essentially the
minimum message traffic possible. A row-distributed algorithm, similar in spirit to the
column method, is discussed in § 3. Concluding remarks are given in § 4.

1. The column algorithm: description and numerical results. In this section, we
describe a new algorithm to solve the upper triangular system Ux = b on a hypercube
multiprocessor, where the n columns of the matrix U are distributed to the p nodes
(processors) in a wrap fashion. A wrap mapping is used because it seems a very
reasonable choice for the factorization stage (e.g., Geist and Heath [1987]). The order
in which the nodes are visited in the wrap assignment is arbitrary; however, the
algorithm is most reasonable when the nodes form a ring. We refer to the node
containing column j as P(j). Therefore, due to the wrap assignment, P(j)= P(k) if
and only if j =k (mod p).

1.1. The algorithm. To motivate our new parallel solver, we first consider an
ordinary sequential solver followed by a distributed sequential solver. We consider the
system Ux = b, where U is upper triangular.

A sequential solver. The algorithm we present is the well-known “‘outer-product”
version. The right-hand side is repeatedly updated by a column of U multiplied by a
newly determined component of the solution. The following program, SEQ, sequentially
computes the solution to Ux =b on a 1-processor. system.

Procedure SEQ
Forj=n:1
b(j) < b(j)/ U}, J)
b(1:j—1)«<b(1:j—1)—U(1:j—1,5) x b(j)
End : .

A distributed sequential solver. Now let us suppose that the columns of U are.
distributed amongst the nodes of a hypercube in a wrap fashion as described above.
Tt is not difficult to change SEQ into a distributed sequential solver. In particular, the
only change is that b must be passed to the processor that computes the next variable.
To follow is the node program. We assume that the right-hand side b is initially stored
on node P(n). On termination b has been overwritten with the solution on node P(1).
Each node executes the following program.

Procedure DSEQ
Forj=n:1
If myname = P(j)
Receive b(1:n) [if j<n]
b(j) < b(H/ U, J)
b(1:j-1)«b(1:j-1)-UQ:j—1,j)x b(j)
Send b(1:n) to node P(j—1) [if j>1]
End
DSEQ isa distributed solver but is not parallel: there is no concurrent computation.

However, parallelism can be added by noting that node P(j) can defer most of the
b-modification until after Sending some updated information to node P(j—1). In
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particular, it is only necessary to process p components of b before Sending. The
remaining components can be modified afterward and thus concurrently with computa-
tions on other nodes.

A Parallel Column Triangular Solver (PCTS). Mechanically, the algorithm is
simple: the p—1 array SUM passes around the ring going from P(j) to P(j—1) for
j=n:2. When SUM arrives at node P(j), P(j) determines x(j), modifies SUM (p
flops), and then forwards SUM to node P(j—1). Finally, node P(j) modifies the first
j—p elements of array PSUM using column j of U(j—p flops).

The procedure PCTS is executed by every node: the following initial conditions
are assumed.

If myname=P(n): SUM(1:p—1)=b(n:n—p+2)
PSUM(1:n—p+1)=b(1:n—p+1)
If myname # P(n): SUM(1:p—-1)=0
PSUM(1:n—p+1)=0
Also, for brevity, we follow the convention that if an array index is out of bounds, the

returned value is assumed to be zero. Each node has at most m = [n/p] columns of
the upper triangular matrix U.

Procedure PCTS (x[1:m], SUM(1:p—1), PSUM (1:n—p+1), U(1:n,[1:m])
Forj=n:1
If myname = P(j)
Receive SUM (1:p—1) [if j<n]
x(j)« (SUM (1)+PSUM (j))/ U(j, j)
SUM(1:p—-2)«SUM 2:p—1)-U(j—1:—(p—2),j)xx(j)
+PSUM (j—1:j—(p—2))
SUM (p-1)«-U(j—(p—1),j)xx(j)+PSUM (j—(p—1))
Send SUM (1:p—1) to node P(j—1) [if j>1]
PSUM(1:j—p)«<PSUM(1:j—p)—U(Q:j—p,j)*xx(j)
End
We have listed all the arrays used, and their dimensions, in the procedure statement.
The square brackets indicate indirect addressing. For example, x[1: m] says that there
are at most m components of the vector x on this node but they are not necessarily
the first m components of the n-vector x. In particular, the components of x are
assigned to the nodes in a wrap mapping consistent with the assignment of columns.
Rather than introduce indirect indexing in the body of the procedure, we refer to
components directly. So, for example, x(j) refers to the jth component of the solution
x, not the jth component of the array x[1: m] on this node. Of course for this reference
to be valid, this component must be assigned to this node.
The mechanism behind PCTS can be described as a distributed outer product.
On each node k the array PSUM holds part of the outer product corresponding to
processed columns on that node; the traveling array SUM funnels the distributed sums
together, as needed.

1.2. Lower solve, permutations, and collecting x. A major application of PCTS is
in the context of Gaussian elimination in which there are four steps:

1. Factor PA=LU

2. b« Pb

3. b« LD

4. b<U7'b

We are explicitly addressing step 4 in this paper. Obviously, step 3 can be accomplished
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by a similar algorithm provided SUM and PSUM are initialized on node P(1). We
will not give details here except to point out that, upon completion of step 3, b is
distributed around the cube. Algorithm PCTS, as it appears here, apparently needs
the right-hand side on node P(n). In fact, a trivial change to PCTS allows you to solve
for x with essentially the same algorithm without collecting b onto a single processor.

In the next section, numerous experiments are discussed; some involve the com-
plete solution to Ax=>5b via steps 1-4 above. The factorization algorithm used is
essentially that of Moler [1986] except that full rows of A are interchanged instead of
partial rows. Thus, on completion, A is overwritten with LU such that PA= LU. The
permutation matrix P is stored as a single n-array, distributed over the cube in
accordance with the column distribution. Therefore, in order to execute step 2, we first
collect P onto a single processor, node P(1): Every node sends 1 message of length
[n/p]tonode P(1). A similar collection step is performed, with respect to the solution,
after step 4. Experimentally, these two collection steps contribute very little to the
running time of the triangular solution stage.

1.3. Numerical experiments with PCTS. Our experiments were performed on an
Intel hypercube iPSC (release 2.0) with 16-nodes using Fortran ftn286. All computations
were performed in double precision. This cube is operated by the Theory Center at
Cornell University. This particular system has extra memory boards so that the total
available memory per node is approximately 4 megabytes. Hence, the total available
memory on a 16-node cube is approximately 64 megabytes: we were able to run
experiments on dense matrices up to order approximately n =2000.

The megaflop rate is the number of millions of floating point operations (megaflops)
per second. Note. Megaflop rate does not refer to millions of flops per second but rather
millions of floating point operations per second. One flop requires two floating point
operations. Experimentally, we determined the maximum megaflop rate per node,
mflpy, to be .033 megaflops per second. Hence, the maximum megaflop rate for the
cube on 16 nodes, mflpfs, is approximately .53 megaflops per second. The maximum
megaflop rate per node, mflp}, was determined by executing PCTS on one node for
large n; then,
n*x107¢
mflp} = T °
where T is the execution time.

For all our experiments, we used a single test problem where the matrix A is

.
n—i—j+1.5
and b(i) = n—i+1. Pivoting is required for stability purposes when solving this system.

One final remark concerning our reported results: we did not, in fact, use a ring
ordering for our experiments. The natural ordering of the nodes of the cube was used.
Hence, we expect a modest improvement in the performance of PCTS when imple-
mented on a real ring. (We have performed several experiments using a real ring
embedding; we observed improvements in PCTS in the range 10-20 percent.)

In the context of LU solve. Our original motivation for pursuing this research was
to develop a column based parallel triangular solver whose running time was insig-
nificant relative to the LU factorization time for all reasonably large n. A distributed
sequential triangular solver such as DSEQ does not have this property.

In Table 1.1, we present numerical results obtained on a cube of size p =16. The
LU factorization program used is due to C. Moler (Intel Scientific Computers) but

A(,j) =




490 G. LI AND T. F. COLEMAN

TABLE 1.1
LU factorization versus triangular solve (seconds).
(p=16)
N LU DSEQ PCTS
100 5.216 2.496 2.080
200 23.248 15.992 4.144
400 125.552 56.992 8.352
600 363.376 112.464 12.416
800 801.424 213.440 16.656
1000 1,491.024 286.656 20.592
1200 2,509.840 439.296 24.768
1500 4,759.842 628.080 30.960
2000 10,974.032 1,122.624 41.696

modified slightly: in our version, row interchanges are explicitly performed on the
whole row rather than just on the part of the row in U. This has no noticeable effect
on the running time of the LU factorization but allows for the separation of the tasks
2 and 3 mentioned in § 1.2.

The triangular solve times listed include the application of the permutation matrix
to the right-hand side as well as the collection of the final solution in node P(1). For
comparison we have also listed the running time for algorithm DSEQ (a distributed
sequential solver). In both cases we used an assembler version of the BLAS (Basic
Linear Algebra Subroutines, Lawson et al. [1979]), as implemented by C. Moler.

As evidenced above, the total running time is clearly dominated by the factorization
stage when the new parallel triangular solver is used. For example, when n =600,
DSEQ takes about 3 of the factorization time, whereas PCTS takes 36 of it. Figure 1.1
is a plot of DSEQ versus PCTS: clearly the difference between the two methods is
dramatically increasing with n.

Time as a function of problem size n. An important concern is the way in which
the running time of PCTS varies with n. As we establish in § 2, the dependence is
linear up to a threshold value of n, and then quadratic. We explain this transition in § 2.

Graphs of the running times of the triangular solve stage, for different n, are
shown in Figs. 1.2 and 1.3. Note: the times reported represent the sums of the times
to apply the permutation matrix, execute both the lower and upper triangular solves,
and then collect the solution on node P(1).

In Fig. 1.2, the transition from linear to quadratic is clear. The threshold value
occurs at approximately n =400 which is close to the theoretical value established in
the next section.

Figure 1.3 shows that T varies linearly for n up to its maximum possible value
when p = 16. In this case the threshold value of n, demarking the transition from linear
to quadratic performance, is beyond the storage capacity of the 16-node cube.

In Figs. 1.4 and 1.5 we chart the megaflop rates obtained for different values of
n for both the 4-node and 16-node cubes. The megaflop rate is computed as follows.
For each run the system clock records the running time, T, for the triangular solution
stage (i.e., apply P, two triangular solves, collect solution on node P(1)). Then, the
megaflop rate on a p-node cube is:

2n?x 107
mflp, ==————.
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We use 2n° because this is the total number of floating point operations to solve the
lower and upper systems. The maximum megaflop rate, mflp}, was determined as
described previously. Notice that, in Fig. 1.4, the linear/quadratic transition is evident.

In Fig. 1.5, the curve remains linear because the quadratic stage demands a matrix of
size exceeding the storage capacity.
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Comparisons. In this section we experimentally compare our new triangular solver,
PCTS, to an alternative parallel column solver, CPIP, suggested by Romine and Ortega
[1986] and implemented by C. Moler. (We used C. Moler’s implementation in our
experiments. We believe it represents a careful and efficient implementation of the
algorithm described by Romine and Ortega [1986]. It is written in the same style as
PCTS: e.g., the “BLAS” were used wherever possible. We should note that the assembler
versions of the BLAS were not used in these particular experiments. The reason is that
the assembler codes available to us did not allow for step increments (“INCX”)
different from unity: hence, CPIP could not benefit from an assembler implementation.
Therefore, to be fair, we used only Fortran code in both cases.)

This algorithm complements PCTS in the sense that while PCTS is a distributed
outer-product method, CPIP computes a distributed inner product.

Procedure CPIP
Fori=n:1
t<0
For each k> i such that P(k) = myname
tet+x(k)xU(i k)

Participate in fan-in: } #- ¢ on node P(i)
If myname = P(i)

b(i)—t

U(i, i)

x(i) «
End

We use the notation ‘). - ¢ on node P(i)” to indicate that the distributed partial
sums are added together, using a tree structure embedded in the hypercube, with the
final sum determined on node P(i). Moler [1986] describes this process in more detail.
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Results of our experiments comparing our implementation of PCTS with Moler’s
implementation of CPIP follow in Table 1.2. Notice that the difference between PCTS
and CPIP increases with n. Indeed, this trend is clearly illustrated in Fig. 1.6.

We note that recent experiments by Heath and Romine [1987] and Li and Coleman
[1987] suggest that if n is held fixed and p is increased then algorithm PCTS begins
to fare rather poorly relative to CPIP (and other recently proposed algorithms).
However, a generalization of PCTS, proposed by Li and Coleman [1987], overcomes
this apparent degradation in performance; moreover, the generalized algorithm reduces
to PCTS when n/p is sufficiently large.

80

60

40

20

Comparison of new method (PCTS) versus inner

TABLE 1.2

product method .(CPIP) (seconds).

(p=16)
N CPIP PCTS
100 3.904 2.192
200 7.744 4.432
400 16.480 8.880
600 25.424 13.360
800 35.328 17.776
1000 45.568 22.432
1200 56.208 26.576
1500 73.744 33.840
1765 90.688 40.624

T(secs)

CPIP

PCTS

500

1
1000

FiG. 1.6. (p=16).

1
1500

2000

2. Analysis of column method. In this section we analyze algorithm PCTS. First,
we derive an expression for the time complexity T—measured in flops—as a function
of n, t, and p. (Recall that ¢ is a measure of the time (in flop units) to send a message
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of size p from one node to an adjacent node.) Expression T accounts for total
computation time, including communication costs. Our theory is completely consistent
with, and explains, the empirical evidence reported in § 1. A second analysis considers
only the message-passing aspect of PCTS: we show that PCTS achieves minimum
message traffic, in several senses, over all algorithms for solving a distributed triangular
system.

2.1. Complexity analysis. The major result in this section is an expression for the
total time T, expressed in number of flops.

For simplicity, let us assume that n = mp for some integer m> 2, where p is the
number of nodes (processors) and n is the matrix dimension. Further, we assume that
the columns are dealt out to the nodes in a wrap fashion; the nodes are ““configured”
to form a ring. Let P(i) be the node housing column i. Hence P(i+1) is adjacent to
P(i) for i=1:n-1 and P(1) is adjacent to P(n).

For convenience, we have taken some freedom with the definition of the term
“flop.” In general, 1 flop represents the operation y < ax+y which is 2 floating point
operations. However, algorithm PCTS does not cleanly break up into flops: for example,
the update of SUM (i) for 1=i=p—2, requires slightly more than 1 flop. We have
decided to ignore these deviations in our analysis: we decree that every assignment
statement in PCTS costs 1 flop. This assumption allows for a much cleaner presentation
and obscures no important information. (Alternatively, we could count floating point
operations—every multiply, add, subtract, and divide counts as 1. We have decided
not to present this analysis because it is very clumsy and no more enlightening than
the “flop”” approach.)

THeEOREM 2.1. If n=p(t+p) then

p(p—-1)

T=(t+p)n—
(t+p)n >

t

else
1[n? 2 2
=§ -;+n+p(t+p) —pt—2p°+p—t

Before proving this result, we first analyze the work profile of node P(n). It is
important to realize that node P(n) is the only node which can cause the cycling p—1
vector SUM to be delayed.

THEOREM 2.2. Every node, except possibly node P(n), processes SUM immediately
after the message containing SUM arrives.

Proof. This is obviously true in the first cycle. Without loss of generality, assume
it is not true in the second cycle: Let node P(n—p —j), j # 0, be the first node (except,
possibly, for node P(n)) at which SUM is delayed. Hence, node P(n—p—j) is still
busy processing column n —j when SUM arrives in the second cycle. Let T, _; be the
time it takes SUM to traverse the cycle

P(n—j)»P(n—j—1)=>-++>P(n—p)>+ > P(n—p—j)=P(n—j),

where we do not count the processing times of node P(n —j) = P(n'— p—Jj). Since SUM
cannot be processed immediately by P(n —j) at the end of this cycle, and node P(n —j)
must perform n—j—p flops,

@.1) T,;<n—j—p.
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Define T, to be the time it takes SUM to traverse the first cycle

P(n)->P(n—1)->--->P(n—p)=P(n),
where we do not count any processing time in node P(n). Therefore,
(2.2) T,.i=T,+W,

where we assume that SUM must wait for time W =0 before node P(n) is able to
process column n—p. Hence, since node P(n) must perform n—p flops before it is
ready to process column n—p,

(2.3) T,+W=n-p.

Obviously, (2.1)-(2.3) and j # 0 yield a contradiction. O

The next result says that the total processing time T can be determined by
essentially just considering the processing time of node P(n). Let T(P(n)) be the total
elapsed time of node P(n): i.e., the time at which processor P(n) finishes processing
column p.

LEMMA 2.3. T=T(P(n))+t(p—1)+p(p-1)/2.

Proof. After column p is completed at node P(n), vector SUM is then passed
around the ring one last time: at each node P(p —i), p—i flops are performed. Since
this last phase is totally sequential, the result follows. 0O

We can now prove Theorem 2.1.

Proof. The activity of node P(n) alternates between stages of floating point
operations, F;, F>,- -, F,, and possible idle or waiting periods, W,,---, W, _,.
Hence, the activity sequence is

(24) FlaW]’F2’W2,“'aFm-

The number of flops in stage F; is n—(i—1)p. By Theorem 2.2, the vector SUM is
processed immediately upon arrival at each node on the cycle (except possibly node
P(n)). Now, since each node performs p flops before forwarding SUM, and since
SUM is transferred to the subsequent node in time ¢, it follows that W, is bounded
above by tp+(p —1)p. However, after forwarding the p-vector SUM, node P(n) must
complete F;:n—ip flops remain. Therefore, the waiting time is

(2.5) W, =max {tp+p(p—1)—(n—ip), 0},

which we will denote as (tp+p(p—1) —(n—ip))™*. Therefore, the total processing time
for node P(n) is

(26) 1) = § (n=G=1p)+'E (p+p(p=1)=(n=ip)"
But

m 2
(2.7) I (n—(i-—l)p)=;—p+-§

and the second term in (2.6) can be simplified if we consider two separate cases. In
particular if n=p(t+ p) then this term is just Z:":—]] (tp+p(p—1)—(n—ip)) and with
(2.7) yields

(2.8) T(p(n))=(t+p)n—(t+p—1)p.
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On the other hand, if n> p(t+p) then

m-—1 m-—1
Y (p+p(p—1)—-(n—ip))'= ¥  (p+p(p—-1)—(n—ip)),
i=1 i=m—(t+p)+1
which simplifies to p/2{(t+p)>—3(t+ p)+2}. Therefore, in this case,
n’> n. p 2
(2.9) T(P(n))=——+-+>{(t+p)°—3(t+p)+2}.
2p 2 2
By (2.8), (2.9), and Lemma 2.3, the result follows. O

Theorem 2.1 provides considerable insight into algorithm PCTS and its expected
behavior. We discuss this next.

T as a function of n. Let p and t be fixed. Then we see that for n =p(t+p), T(n)
is a linear function of n; otherwise, T(n) varies quadratically with n. This degree
change is easy to explain and is clearly consistent with our numerical experiments.
The linear behavior occurs when the computation time is bound by the time it takes
the (p—1)-array SUM to travel around the ring (with p flops at each node). In this
case, whenever SUM arrives at node P(n), it is processed immediately without delay
(i.e., the processor is idle when the message arrives). On the other hand, the quadratic
behavior is exhibited when SUM cannot always be processed immediately when it
arrives at node P(n): In this case the overall processing time is computation bound.

Figure 2.1 was generated using the expressions in Theorem 2.1 (i.e., we used a
plotting routine to generate Fig. 2.1). The linear portion is labeled f; and the quadratic,
f,- The computation time T follows f; until it reaches (and is tangent to) f;, after which
T follows f,. Note that T is always above the curve depicting full speedup, n*/2p. Of
course, from Theorem 2.1,

1.2
P10

T(n)

(2.10)

>p as n->o.

T(mils of f'lcm]s)

PCTS

full speed up

0.05 o -

I 1
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Fi1G. 2.1. (p=4, t=100).
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Theorem 2.1 indicates that the point of intersection occurs when n = (t+ p)p: this
is corroborated by numerical experiments. For example, if ¢ =100 and p =4 then the
curves meet at approximately n=400; for p=16 the intersection point is roughly
n = 2000.

Of course full speedup is never actually achieved; however, (2.10) indicates that
a speedup of p/2 can be obtained for some value of n. Define n,,, to be that value. Hence,

1.2
2My2 P

T("l/z) 2

This measure reflects the rate at which full speed up is approached, as n increases. In
particular, n,,, can help one determine whether or not a substantial speed up will
occur in practice, for reasonable n. Moler {1986] also uses a similar definition of n,,,.

T as a function of t. As t decreases, the threshold value of n (marking the transition
from f; to f;) decreases. Offsetting this effect, both f; and f, decrease in value: a net
reduction in T ensues. As expected, T is computation-bound for a wider range of n
as the communication time ¢ decreases.

T as a function of p. It is natural to expect T to decrease as the number of
processors, p, increases. In fact, this is not entirely true. In particular, suppose n and
t are fixed and let p, be such that n < py(t+ p,). It is now easy to see that T( p) increases
as p increases. This incline continues until n= p(t+p) at which point T(p) is then
defined by the second function,

1(n?
T(p)=5{;+n+p(t+p)2—pt—p2+p}—t.

Now, as p continues to increase, T will generally decrease (provided n is not too
small). Hence, the optimal value of p, for fixed p and ¢, and n sufficiently large, is
implicitly defined by n=p(t+p).

2.2. Message traffic analysis. Algorithm PCTS exhibits low communication costs;
the experimental success of this algorithm is due, in part, to this property. In this
section we show that message traffic is minimum, in several senses.

First, a few definitions are in order. Define a Unit of Traffic (TU) to be the transfer
of one word of information from one node to an adjacent node. The Traffic Volume
(TV) is just the sum of the traffic units.

In Theorem 2.6, we prove that algorithm PCTS exhibits essentially the minimum
possible TV over a wide class of algorithms to solve Ux=b. We establish three
preliminary results first. All results in this section are under the assumption that the
columns of U are distributed over the nodes of a hypercube in wrap fashion and n = p.

First we consider the traffic required to determine component x(i).

LeEmMMA 2.4. The determination of x(i) requires at least min{p—1, n—i} TUs.

Proof. The ith component of x is

_[b()-U(,i+1:n)"x(i+1:n)]
- U(i, i) :
But U(i,i+1:n) is distributed over min (p—1, n —i) nodes; therefore, x(i) induces
at least that many TUs. 0O
The next result gives the minimum possible TV over all algorithms for Ux = b.
LEMMA 2.5. The determination of x requires at least n(p—1)—p(p—1)/2 TUs.
Proof. By Lemma 2.4 the determination of x(i) requires min (p—1, n—i) TUs.
But, because each x(i) corresponds to different rows, they must be independent units;

x(i)
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hence
p-1
TV=(n-p)(p—-1)+ ¥ i
i=1

which simplifies to the stated result. [

We are now ready to show that the message traffic produced by the algorithm
PCTS is essentially minimum. Let TV, be the minimum message traffic volume over
all algorithms to solve Ux =b (under the wrap assignment assumption).

THEOREM 2.6. Let TV be the message traffic volume for PCTS. Then

TV=TV,+O0(p?).

Proof. The message volume is clearly ( p—1)(n—1) units which simplifies to
TV, +(p—2)(p-1)/2. O

Therefore, for fixed p, PCTS is just a constant away from exhibiting minimum
message traffic volume. Note that this gap is somewhat arbitrary and can easily be
overcome by a slight modification to PCTS. In particular, the “send statement” can
be changed to read:

Send SUM (1:min (p—1,j—1)) to node P(j—1) [if j>1]

and the algorithm is still valid but now exhibits minimum message traffic volume.

The previous three results are concerned with traffic volume; the next considers
instead the total number of messages. We define an algorithm for Ux = b wrap-consistent
if a wrap mapping is used and the final determination of x(i) is computed on node P(i).

LEMMA 2.7. At least n—1 messages are required by a wrap-consistent algorithm for
Ux=b.

Proof. The variable x(i) cannot be computed until U(i, i +1) X x(i+1) is known
for (i <n). But x(i+1) is finally determined on P(i+1) whereas x(i) is finally deter-
mined on P(i); therefore, at least one message must pass between these two nodes
before x(i+1) is finally determined. 0O

THEOREM 2.8. Algorithm PCTS passes the fewest possible total messages over all
wrap-consistent algorithms. [

Since PCTS produces the fewest number of messages as well as the minimum
traffic volume (essentially) the next result follows immediately.

COROLLARY 2.9. Over all minimum message passing consistent algorithms, PCTS
minimizes the maximum message length. [0

Remark. Tt is important to realize that minimizing TV or the total number of
messages is not a guarantee of best possible communication. The integration of a given
message with other possible activities must be considered. For example, consider PCTS
when n is large. In this case concurrent floating point computations completely mask
message traffic.

3. The row algorithm. The column-based algorithm PCTS has an analogous row-
based procedure. In particular, a p—1 array XSUB is passed around the ring, going
from P(i) to P(i—1) for i=n:1. Upon arrival at P(i), x(i) is determined (p flops),
XSUB is shifted and forwarded to node P(i—1), and finally, m elements of the
right-hand side are modified. Richard Chamberlain [1986] was the first to suggest this
type of row-oriented algorithm.

In the procedure listed below, we follow the convention that if an index is out of
range then the resulting expression is zero; all variables are initialized to be zero.
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Procedure PRTS (XSUB[1:p—1], b[1:m], U([1:m],1:n)
fori=n:1
If myname = P(i)
Receive XSUB (1:p—1) [if i<n]
b(i)«b(i)—U(i,i+1:i+p—-1)xXSUB(1:p—1)
b(i)« b(i)/U(i, i)
XSUB(2:p—1)«<XSUB(1:p—2)
XSUB (1) « b(i)
Send XSUB (1:p—1) to node P(i—1) [if i>1]
fork=i:i+p—1
for each I such that P(l) = myname, 1<i
b(l)« b(l)— U(L, k) xXSUB (k—i+1)
End

Again, we have listed all arrays used and their dimensions in the procedure
statement where the square brackets indicate indirect addressing. For example, b[1: m]
says that there are at most m components of the vector b on this node but they are
not necessarily the first m components of the n-vector b. In particular, the components
of the n-vector b are assigned to the nodes in a wrap mapping consistent with the
assignment of columns. Also: rather than introduce indirect indexing in the body of
the procedure, we refer to components directly. So, for example, b(i) refers to the ith
component of the n-vector b, not the ith component of the array b[1: m] on this node.
Of course for this reference to be valid, this component must be assigned to this node.

Due to the similarity in structure between algorithms PCTS and PRTS and since
we have fully analyzed the former, we have not included an analysis of the latter.

We have implemented and experimented with PRTS. The final do-loop in PRTS
was implemented as shown: i.e., as a sequence of “daxpys.” Note that it is also possible
to implement this update as a sequence of inner products (‘“ddots”).

The numerical results follow in Table 3.1. We compare PRTS to the row analogue
of CPIP, RPOP—Row Parallel Outer Product, which is structurally very similar to the
column method except the “fan-in”’ operation is replaced with a “fan-out.”

RPOP assumes that the rows of the matrix are distributed, in wrap fashion, around
the cube. This algorithm was suggested by Geist and Heath [1985] and is found below.
In our experiments we used our own implementation of this method: we believe that
this program represents a very careful and efficient implementation of the algorithm

TABLE 3.1
The new row algorithm (RCTS) versus inner
product row algorithm (seconds).

(p=16)
N RPOP PRTS
100 4592 1936
200 9.120 3.616
400 18.848 7.120
600 29.200 10.544
800 39.336 14.112
1000 51.056 17.456
1200 62.896 21.136
1500 82.032 28.000

1800 102.016 35.552
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described in Geist and Heath [1985]. It is coded in the same style as PRTS: i.e., the
Fortran “BLAS” were used wherever possible.

Procedure RPOP
fori=n:1
If myname = P(i)
x(i) <« b(i)/ U, i)
Initiate broadcast of x(i)
else
Participate in broadcast of x(i)
For each k <i such that P(k)= myname
b(k) < b(k) —x(i) x U(k, i)
End

The performance of PRTS is, as expected, similar to the column algorithm PCTS
and considerably better than the outer product method RPOP.

In Fig. 3.1 we plot RPOP versus PRTS: clearly the two curves drift apart as n
increases.

4. Concluding remarks. We have presented a new parallel algorithm, PCTS, for
the solution of triangular systems of linear equations, applicable when the columns of
the matrix are distributed amongst the nodes of a distributed-memory computer, in a
wrap fashion. Our numerical results suggest that PCTS is a competitive algorithm when
n/p is large—indeed, it appears to be unrivaled for n/p sufficiently large. (The
generalized version of PCTS—described in Li and Coleman [1987]—is applicable for
all n/p and reduces to PCTS when n/p is sufficiently large.)

It is interesting that a simple ring communication pattern results in such an efficient
algorithm for n large enough relative to p. The reason is that computations are essentially
pipelined, thus masking communication costs entirely (except at the ends). On the

T(sec)

100 | RPOP

50 -

PRTS

1 1 1
0 500 1000 1500 2000"

FI1G. 3.1. (p=16).
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other hand, when n is not large enough relative to p, the nodes are idle much of the
time (waiting for the (p—1)-vector SUM to complete the cycle) and the algorithm
becomes increasingly inefficient as n/p decreases. Thus, it is natural to attempt to ‘
accelerate the ring-cycling time by decreasing the size of SUM and allowing some
cross-ring traffic. This is exactly what is done in Li and Coleman [1987], to great benefit.
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